Проект EduXXI
Модификатор AcademiaXXI
Учебные пакеты
Программы
Решение задач
Методика
Новости
Киоск
Конкурс
Доска объявлений
Вопросы и ответы
Главная страница
English Главная страница Обратная связь Карта сайта

Непрерывность функции в точке

28 августа 2016 | Рубрика: Книги

Пусть функция f(x) определена в некоторой окрестности O(x0) точки x0 (включая саму точку x0).

Функция f(x) называется непрерывной в точке x0, если существует limxx0 f(x) , равный значению функции f(x) в этой точке:

lim
xx0

f(x) = f(x0),

(1)

т.е.

« O( f(x0) )     $ O(x0) :     x О O(x0) Ю f(x) О O( f(x0) ) .

Замечание. Равенство (1) можно записать в виде:

lim
xx0

f(x) = f (

lim
xx0

x ),

т.е. под знаком непрерывной функции можно переходить к пределу.

Пусть Δx = xx0 — приращение аргумента, Δy = f(x) − f(x0 ) — соответствующее приращение функции.

Необходимое и достаточное условие непрерывности функции в точке

Функция y = f(x) непрерывна в точке х0 тогда и только тогда, когда

lim
Δx → 0

Δy = 0.

(2)

Замечание. Условие (2) можно трактовать как второе определение непрерывности функции в точке. Оба определения эквивалентны.

Пусть функция f(x) определена в полуинтервале [x0, x0 + δ ).

Функция f(x) называется непрерывной справа в точке x0, если существует односторонний предел

lim
xx0 + 0

f(x) = f(x0).

Пусть функция f(x) определена в полуинтервале (x0δ, x0].

Функция f(x) называется непрерывной слева в точке x0, если существует односторонний предел

lim
xx0 − 0

f(x) = f(x0).

Непрерывность суммы, произведения и частного двух непрерывных функций

Теорема 1. Если функции f(x) и g(x) непрерывны в точке х0, то в этой точке непрерывны

f(x) ± g(x),     f(x) · g(x),      

f(x)
g(x)

    (g(x0) ≠ 0).

Доказательство приведено в книге И.М. Петрушко и Л.А. Кузнецова “Курс высшей математики: Введение в математический анализ. Дифференциальное исчисление.” М.: Изд–во МЭИ, 2000. Стр. 59.

Непрерывность сложной функции

Теорема 2. Если функция u(x) непрерывна в точке х0, а функция f(u) непрерывна в соответствующей точке u0 = f(x0), то сложная функция f(u(x)) непрерывна в точке х0.

Доказательство приведено в книге И.М. Петрушко и Л.А. Кузнецова “Курс высшей математики: Введение в математический анализ. Дифференциальное исчисление.” М.: Изд–во МЭИ, 2000. Стр. 59.

Все элементарные функции непрерывны в каждой точке их областей определения.

Локальные свойства непрерывных функций

Теорема 3 (ограниченность непрерывной функции). Если функция f(x) непрерывна в точке x0, то существует окрестность O(x0), в которой f(x) ограничена.

Доказательство следует из утверждения об ограниченности функции, имеющей предел.

Теорема 4 (устойчивость знака непрерывной функции). Если функция f(x) непрерывна в точке x0 и f(x0) ≠ 0, то существует окрестность точки x0, в которой f(x) ≠ 0, причем знак f(x) в этой окрестности совпадает со знаком f(x0).

Доказательство приведено в книге И.М. Петрушко и Л.А. Кузнецова “Курс высшей математики: Введение в математический анализ. Дифференциальное исчисление.” М.: Изд–во МЭИ, 2000. Стр. 59.

Классификация точек разрыва

Условие (1) непрерывности функции f(x) в точке x0 равносильно условию

f(x0 − 0) = f(x0 + 0) = f(x0), (3)

где f(x 0 − 0) =

lim
xx0 − 0

f(x)   и   f(x0 + 0) =

lim
xx0 + 0

f(x) — односторонние пределы функции f(x) в точке x0.

При нарушении условия (3) точка x0 называется точкой разрыва функции f(x). В зависимости от вида нарушения условия (3) точки разрыва имеют различный характер и классифицируются следующим образом:

1. Если в точке x0 существуют односторонние пределы f(x0 − 0), f (x0 + 0) и

f(x0 − 0) = f(x0 + 0) ≠ f(x0),

то точка х0 называется точкой устранимого разрыва функции f(x) (рис. 1).

Замечание. В точке x0 функция может быть не определена.

2. Если в точке x0 существуют односторонние пределы f(x0 − 0), f (x0 + 0) и

f(x0 − 0) ≠ f(x0 + 0),

то точка x0 называется точкой разрыва с конечным скачком функции f(x) (рис.2).

Замечание. В точке разрыва с конечным скачком значение функции может быть любым, а может быть и не определено.

Точки устранимого разрыва и конечного скачка называются точками разрыва 1–го рода. Их отличительным признаком является существование конечных односторонних пределов f(x0 − 0) и
f(x0 + 0).

3. Если в точке x0 хотя бы один из односторонних пределов f(x0 − 0),  f (x0 + 0) равен бесконечности или не существует, то x0 называется точкой разрыва 2–го рода (рис. 3).

Если хотя бы один из односторонних пределов f(x0 − 0),  f (x0 + 0) равен бесконечности, то прямая x = x 0 называется вертикальной асимптотой графика функции y = f(x).

 

Copyright: А.И.Кириллов © 2024
Сделано на "Интернет Фабрике"
Проект EduXXI | Модификатор AcademiaXXI | Учебные пакеты | Программы | Решение задач | Методика | Новости | Киоск | Конкурс | Вопросы и ответы | Доска объявлений
Главная страница | Карта сайта | Обратная связь